Tag Archives: aiart
Work from the wretched year of twenty twenty, the beginning of the downfall of all civilization on planet earth. Artificial intelligence and Neural Networks were once again recruited as generative tools to create interesting and evocative shapes. Then even more neural networks competed against each other to increase depth and detail in the 2d textures, which were then mapped to roughly modelled 3d shapes. We bow down to our new machine overlords – as we always have and always will.
Artificial intelligence is reshaping the frontier of sculpture, introducing a novel category of art known as AI-generated sculptures. This intersection of technology and creativity leverages AI algorithms to conceive and construct three-dimensional artworks, offering a new perspective on the creative capabilities of machines.
AI-generated sculptures stir debate around creativity, authorship, and the essence of art. Critics question the emotional depth of AI-created works, while supporters view AI as an extension of traditional artistic tools, pushing the boundaries of crativity. These sculptures also challenge notions of originality, as AI can generate countless variations on a theme, complicating concepts of uniqueness and copyright in art.
The evolution of AI suggests more intricate and interactive sculptures ahead. Incorporating real-time data could lead to pieces that evolve with environmental changes or audience interactions, blurring the lines between art, viewer, and context. Additionally, merging AI art with virtual and augmented reality technologies promises new experiential dimensions, allowing for immersive encounters with art that transcend physical space.
The rise of AI in sculpture prompts ethical questions about creativity’s nature and the implications of using AI to produce art that may infringe on existing copyrights or dilute the human touch in creativity. These concerns underline the need for ongoing dialogue about the role and regulation of AI in the art world.
AI-generated sculptures represent a dynamic fusion of AI technology and artistic exploration. While they challenge conventional views on art and creativity, they also open up unprecedented possibilities for innovation and expression in sculpture. As AI technology advances, it promises to further expand the horizons of what can be imagined and created, inviting both artists and audiences to rethink the essence and potential of art in the digital age.
More Projects
We tried out a few variants of Machine Learning Art headshots generated with StyleGAN but were quickly bored, after the initial novelty of being able to generate new perfect humanoids at will wore off. These portraits represent the effort of trying to “break” the system and finding a novel aesthetic at the margins. The generated images were then mapped to a rough 3d geometry using the textures as input for specularity, metallicness and roughness. This gives depth and a physicality that the low resolution flat GAN Art images lack.
Below you can find some placeholder text, which consists of a rewritten Wikipedia article (with the help of some machine learning as a matter of course).
The generative system creates competitors while the discriminative system assesses them. The challenge works regarding information dispersions. Normally, the generative system figures out how to plan from a dormant space to an information circulation of intrigue, while the discriminative system recognizes up-and-comers delivered by the generator from the genuine information conveyance. The generative system’s preparation objective is to build the blunder pace of the discriminative system (i.e., “fool” the discriminator organize by creating novel up-and-comers that the discriminator believes are not blended (are a piece of the genuine information distribution)).
A referred to dataset fills in as the underlying preparing information for the discriminator. Preparing it includes giving it tests from the preparation dataset, until it accomplishes satisfactory exactness. The generator trains dependent on whether it prevails with regards to tricking the discriminator. Commonly the generator is seeded with randomized info that is tested from a predefined dormant space (for example a multivariate ordinary circulation). From that point, competitors combined by the generator are assessed by the discriminator. Backpropagation is applied in the two systems with the goal that the generator delivers better pictures, while the discriminator turns out to be progressively gifted at hailing manufactured images. The generator is regularly a deconvolutional neural system, and the discriminator is a convolutional neural system.
GANs regularly experience the ill effects of a “mode breakdown” where they neglect to sum up appropriately, missing whole modes from the information. For instance, a GAN prepared on the MNIST dataset containing numerous examples of every digit, may by the by tentatively preclude a subset of the digits from its yield. A few specialists see the root issue to be a feeble discriminative system that neglects to see the theme of exclusion, while others allocate fault to an awful decision of target work. Numerous arrangements have been proposed.